Interaction

DongYoon Yang

Seoul National University

July 22, 2021

DongYoon Yang (SNU)

Casual Inference What If

≣ ১ ৰ ≣ ১ আ আ July 22, 2021 1/11

2 Interaction between two treatments

3 Identifying interaction

Counterfactual framework Sufficient-component-cause framework

Interaction between two treatments

Identifying interaction
 Counterfactual framework
 Sufficient-component-cause framework

- Many causal questions are about the effects of two or more simultaneous treatments.
- This chapter provides a formal definition of interaction between two treatments , both counterfactual framework and the sufficient-component-cause framework.

2 Interaction between two treatments

Identifying interaction
 Counterfactual framework
 Sufficient-component-cause framework

• A = 1(heart transplant), A = 0(no heart transplant)

•
$$E = 1$$
(vitamin), $E = 0$ (no vitamin)

Definition

We say that there is interaction between A and E on the additive scale in the population if

$$P(Y^{a=1,e=1}=1) - P(Y^{a=0,e=1}=1) \neq P(Y^{a=1,e=0}=1) - P(Y^{a=0,e=0}=1)$$

- Difference between interaction and effect modification.
- The concept of effect modification refers to the causal effect of A, not to the causal effect of V.

Interaction between two treatments

Identifying interaction Counterfactual framework Sufficient-component-cause framework

- If *E* is randomly assigned, $P(Y^{a=1,e=1} = 1) = P(Y^{a=1} = 1|E = 1)$.
- The interaction between A and E is rewritten by

$$P(Y^{a=1} = 1 | E = 1) - P(Y^{a=0} = 1 | E = 1)$$

$$\neq P(Y^{a=1} = 1 | E = 0) - P(Y^{a=0} = 1 | E = 0)$$

Counterfactual response types and interaction

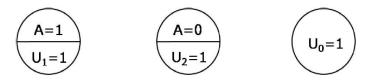

T 1 1 **F** 0

Table 5	.2			
$Y^{a,e}$ for each a, e value				
Туре	1, 1	0, 1	1,0	0, 0
1	1	1	1	1
2 3	1	1	1	0
3	1	1	0	1
4	1	1	0	0
5	1	0	1	1
6	1	0	1	0
7	1	0	0	1
8	1	0	0	0
9	0	1	1	1
10	0	1	1	0
11	0	1	0	1
12	0	1	0	0
13	0	0	1	1
14	0	0	1	0
15	0	0	0	1
16	0	0	0	0

• Type 1, 4,6, 11, 12, 13, 16 : No interaction between A and E

Sufficient Cause

- Take those who were treated.
- Some died; others survived.
 - **1** Heart transplant(A = 1) only results in death in individuals allergic to anesthesia($U_1 = 1$). ($A = 1, U_1 = 1 \rightarrow Y = 1$)
 - 2 No heart transplant(A = 0) only results in death if individuals have ans ejection fraction less than $20\%(U_2 = 1)$ ($A = 0, U_2 = 1 \rightarrow Y = 1$)
 - **3** All individuals with pancreatic cancer($U_0 = 1$) at the start of the study will die. ($U_0 = 1 \rightarrow Y = 1$)

• A sufficient cause interaction between A and E exists in the population if A and E occur together in a sufficient cause.

Examples (sufficient cause interaction)

- $A = 1, E = 1 \rightarrow Y = 1$
- $A = 1, E = 0 \rightarrow Y = 0$
- $A = 0, E = 1 \rightarrow Y = 0$
- Sufficient cause interaction between A and E is synergistic if (A = 1, E = 1) are present in the same sufficient cause.
- Sufficient cause interaction between A and E is antagonistic if (A = 1, E = 0) or (A = 0, E = 1) are present in the same sufficient cause.